Inputs
Formula reference
- Mean E[X] =
k
- Variance Var[X] =
2k
- Std dev σ =
√(2k)
- Mode max(
k − 2
, 0) - Median ≈
k(1 − 2/(9k))³
(Wilson–Hilferty)
Results
Quantity | Value | Copy |
---|---|---|
Mean E[X] | 4.0000 | |
Variance Var[X] | 8.0000 | |
Standard deviation σ | 2.8284 | |
Mode | 2.0000 | |
Median (approx.) | 3.3697 | |
Skewness | 1.4142 | |
Excess kurtosis | 3.0000 |
Values are rounded to 4 decimal places. For k < 2 the mode is set to 0 by convention.
Derivation sketch
If X = \sum_{i=1}^k Z_i^2
with Z_i ∼ 𝒩(0,1)
iid then E[X] = k and Var[X] = 2k by linearity of expectation and variance additivity for independent variables.
Wilson–Hilferty approximation
The cube-root transformation yields (X/k)^{1/3} ≈ 𝒩(1 − 2/(9k), 2/(9k))
, giving the median approximation k(1 − 2/(9k))^3
.