Enter integer stoichiometric coefficients. Leave a coefficient as 0 to exclude a species. Concentrations are molarity (mol·L-1). The method solves for the change variable x using a bracketing bisection scheme.
Notice: Array to string conversion in /home/u294241901/domains/codingace.net/public_html/chemistry/ice_table_solver.php on line 304
[]1?''.1.'':''; ?> /
Notice: Array to string conversion in /home/u294241901/domains/codingace.net/public_html/chemistry/ice_table_solver.php on line 315
Notice: Array to string conversion in /home/u294241901/domains/codingace.net/public_html/chemistry/ice_table_solver.php on line 316
[]1?''.1.'':''; ?> · []1?''.1.'':''; ?>
Define the reaction aA + bB ↔ cC + dD. The ICE framework uses a single change variable x so that at equilibrium [A] = A0 - a x, [B] = B0 - b x, [C] = C0 + c x, [D] = D0 + d x. The mass action expression is Q(x) = \(\frac{{[C]^c[D]^d}}{{[A]^a[B]^b}}\). The solver finds x such that Q(x) = Kc, enforcing non-negativity for every species across the bracket.
Tips: If Kc is extremely large or small, expect x to approach a feasibility boundary. Use more significant figures if rounding dominates.