Enter Function
Formulas
Basic trigonometric derivatives:
$$\frac{d}{dx}\sin(u)=\cos(u)\,u', \quad \frac{d}{dx}\cos(u)=-\sin(u)\,u', \quad \frac{d}{dx}\tan(u)=\sec^2(u)\,u'.$$
$$\frac{d}{dx}\cot(u)=-\csc^2(u)\,u', \quad \frac{d}{dx}\sec(u)=\sec(u)\tan(u)\,u', \quad \frac{d}{dx}\csc(u)=-\csc(u)\cot(u)\,u'.$$
Chain rule: $$\frac{d}{dx}f(g(x)) = f'(g(x))\cdot g'(x).$$
Product rule: $$\frac{d}{dx}[u\cdot v] = u'v + uv'.$$ Quotient rule: $$\frac{d}{dx}\left[\frac{u}{v}\right] = \frac{u'v-uv'}{v^2}.$$
General power: $$\frac{d}{dx}\big(f(x)^{g(x)}\big)=f(x)^{g(x)}\left(g'(x)\ln f(x)+g(x)\frac{f'(x)}{f(x)}\right).$$
Result
Enter a function and press Differentiate to see the first derivative.
How to write inputs
- Multiplication must be explicit: write 3*x not 3x.
- Powers: x^2, (sin(x))^2, 2^x, or general f(x)^g(x).
- Constants: pi, e. Other symbols become constants wrt the chosen variable.
- Supported functions: sin, cos, tan, cot, sec, csc, ln, log, exp, sqrt.