| # | Model | ρ [kg/m³] | v [m/s] | D [m] | Params | μapp [Pa·s] | Re (generalized) |
|---|
Wall shear rate: For laminar, circular pipe, Newtonian baseline uses \( \gamma_w \approx \dfrac{8v}{D} \). For power‑law and many shear‑dependent fluids, the Metzner–Reed correction gives \( \gamma_w \approx \dfrac{8v}{D}\,\dfrac{3n+1}{4n} \).
Generalized Reynolds number (apparent‑viscosity basis): \( \displaystyle \mathrm{Re}_g = \frac{\rho\,v\,D}{\mu_{\mathrm{app}}} \), where \( \mu_{\mathrm{app}} \) is the viscosity evaluated at the chosen shear rate.
- Newtonian: \( \mu_{\mathrm{app}} = \mu \), so \( \mathrm{Re}=\rho v D/\mu \).
- Power‑law: \( \mu_{\mathrm{app}} = K\,\gamma_w^{\,n-1} \).
- Herschel–Bulkley: \( \mu_{\mathrm{app}} = \tau_y/\gamma_w + K\,\gamma_w^{\,n-1} \).
- Carreau–Yasuda: \( \mu = \mu_\infty + (\mu_0-\mu_\infty)\,\big[1+(\lambda\gamma)^{a}\big]^{\frac{n-1}{a}} \).
- Cross: \( \mu = \mu_\infty + \dfrac{\mu_0-\mu_\infty}{1+(\lambda\gamma)^{m}} \).
Metzner–Reed generalized Reynolds (power‑law): \( \displaystyle \mathrm{Re}_{g,\mathrm{MR}}= \frac{\rho\,v^{\,2-n} D^{\,n}}{K\,8^{\,n-1}\left(\frac{3n+1}{4n}\right)^{\,n-1}} \). This reduces to the classical definition at \(n=1\).
Regime hint: As a practical guide, laminar if \(\mathrm{Re}_g\lesssim 2100\), transitional for 2100–4000, turbulent if \(\mathrm{Re}_g\gtrsim 4000\). Thresholds vary slightly with rheology and entrance effects.
- Enter density, mean velocity, and pipe diameter using convenient units.
- Select a rheology model and provide the corresponding parameters.
- Press Calculate to compute wall shear rate, apparent viscosity, and Reynolds.
- Review the regime classification and, for power‑law, the Metzner–Reed value.
- Use the example rows to explore typical fluids; click to auto‑fill inputs.
- Export the example table as CSV or create a quick PDF summary.
All computations are performed in SI internally. Results are intended for steady, fully developed, incompressible, single‑phase pipe flow.