Advanced calculator for particle terminal velocity in diverse fluids with flexible inputs. Choose presets or enter fluid properties with intuitive unit switching today easily. Get velocity, Reynolds number, drag coefficient, and regime hints instantly. Export results to CSV and PDF, and save example scenarios for later. Iterative solver handles nonlaminar flows with robust stability.
| # | d (μm) | ρₚ | ρ_f | μ | g | φ | Model | vt | Re | Load |
|---|
| # | d (μm) | ρₚ | ρ_f | μ | g | φ | Model | vt (m/s) | Re | Cd | ν (m²/s) | C | n | vh (m/s) | t(H) s |
|---|
| Case | Particle | Fluid | d (μm) | ρₚ (kg/m³) | ρ_f (kg/m³) | μ (Pa·s) | g (m/s²) | φ | Action |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Silica sand | Water ~20°C | 300 | 2650 | 998 | 0.001 | 9.80665 | 0.9 | |
| 2 | Pollen grain | Air ~20°C | 30 | 1400 | 1.204 | 1.82e-5 | 9.80665 | 0.7 | |
| 3 | Steel shot | Water ~20°C | 1000 | 7850 | 998 | 0.001 | 9.80665 | 1.0 |
Stokes regime (Re ≪ 1): $$ v_{Stokes} = \frac{(\rho_p-\rho_f) g d^2}{18 \mu} $$
Force balance: $$ \frac{\pi}{6} d^3 (\rho_p-\rho_f) g = \frac{1}{2} C_d \rho_f \left(\frac{\pi}{4} d^2\right) v_t^2 $$ $$ v_t = \sqrt{ \frac{4 d (\rho_p-\rho_f) g}{3 C_d \rho_f} } $$
Sphere drag (Schiller–Naumann): $$ C_d = \begin{cases} \dfrac{24}{Re}\left(1+0.15\,Re^{0.687}\right), & Re \le 1000 \\[6pt] 0.44, & Re > 1000 \end{cases} $$
Ganser non-spherical drag (sphericity \( \phi \)): $$ Re^\* = Re \, K_1 \, K_2, \quad C_d = \frac{24}{Re^\*}\left(1+0.1118\,{Re^\*}^{0.6567}\right) + \frac{0.4305}{1 + 3305/Re^\*} $$ with $$ K_1 = \left(\tfrac{1}{3} + \tfrac{2}{3}\phi^{-0.5}\right)^{-1}, \qquad K_2 = 10^{\,1.8148\,[ -\log_{10}(\phi) ]^{0.5743}}. $$
Kinematic viscosity: \( \nu = \mu / \rho_f \).
Hindered settling (Richardson–Zaki): $$ v_h = v_t (1-C)^n, \quad \varepsilon = 1-C $$ \( n \) by Garside–Al-Dibouni: \[ n=\begin{cases} 4.65,& Re<0.2\\ 4.4\,Re^{-0.03},& 0.2\le Re<1\\ 4.4\,Re^{-0.10},& 1\le Re<500\\ 2.4,& Re\ge 500 \end{cases} \]
Air density (ideal gas): \( \rho_f = \dfrac{P}{R T} \), with \(R=287.058\) J·kg⁻¹·K⁻¹.
Water density (empirical) (°C): \( \rho_f \approx 1000\left[1 - \frac{(T-3.9863)^2(T+288.9414)}{508929.2\,(T+68.12963)}\right] \) kg/m³.
Assumptions: Newtonian carrier; ideal gas air; water fit near atmospheric pressure; no wall/slip/hindered‑bed corrections beyond R–Z.
Tips: φ helper suggests typical values by material/shape.
Important Note: All the Calculators listed in this site are for educational purpose only and we do not guarentee the accuracy of results. Please do consult with other sources as well.