Inputs
CopiedLaminar assumed for Reg < 2100.
Colebrook generalized by Dodge–Metzner exponents.
m
Inner diameter. Presets can overwrite.
m
m³/s
kg/m³
Pa·sⁿ
Shear stress τ = K γ̇ⁿ. K units follow system.
–
n<1 thinning, n>1 thickening, n=1 Newtonian.
Choose typical ε or keep custom.
m
Preset updates this value in current units.
Sets D using typical IDs. Verify for design.
—
m/s²
For head loss conversion.
tol
iter
Used when friction model is Non-Newtonian Colebrook.
Results
Enter inputs and click Calculate.
Moody-style chart (Reg vs f)
Uses current n and ε/D. Shows laminar, smooth turbulent, and NN Colebrook.
Example data
| # | D [mm] | L [m] | Q [L/s] | ρ [kg/m³] | K [Pa·sⁿ] | n | ε [mm] | Reg | Regime | ΔP/L [kPa] |
|---|
Click “Use” to populate inputs from a row.
Batch runner (CSV with header mapping)
Upload CSV, map headers, and compute ΔP for many cases. Fields: D, L, Q, rho, K, n, optional eps, unit (SI/US), regime (auto/laminar/turbulent), friction (smooth/envelope/nncolebrook), optional ftol, fiter.
| # | unit | D | L | Q | ρ | K | n | ε | Re_g | regime | friction | f | ΔP | ΔP/L | h_f |
|---|
Formulas used
- Power-law rheology: τ = K γ̇ⁿ.
- Velocity: V = 4Q/(πD²).
- Metzner–Reed Reg: ρ V^{2−n} D^{n} / [ K · 8^{(n−1)} · ((3n+1)/(4n))^{n} ].
- Darcy f: Laminar: 16/Reg. Smooth turbulent: 1/√f = 4 n^{-0.75} log₁₀(Reg√f) − 0.4 n^{-1.2}. Fully rough: f = [−2 log₁₀(ε/(3.7D))]^{-2}. Non-Newtonian Colebrook: 1/√f = 4 n^{-0.75} log₁₀((Reg√f)/((ε/D)/3.7 + 5.74/Reg^{0.9})) − 0.4 n^{-1.2}.
- ΔP: f (L/D) (ρ V² / 2), hf: ΔP/(ρg).