Method: Lockhart–Martinelli with Chisholm parameter C. Compute single-phase friction gradients for liquid-only and gas-only at their portion of mass flux, then apply two-phase multiplier.
Single-phase preliminaries
- Area
A = π D²/4, total mass fluxG = ṁ/A - Liquid mass flux
G_l = G(1−x), Gas mass fluxG_g = Gx - Velocities alone (superficial):
V_lo = G_l/ρ_l,V_go = G_g/ρ_g - Reynolds numbers:
Re_l = G_l D/μ_l,Re_g = G_g D/μ_g - Churchill friction factor (Darcy):
f = 8 [ (8/Re)^{12} + 1/(A+B)^{1.5} ]^{1/12},A = [2.457 ln((7/Re)^{0.9} + 0.27 ε/D)]^{16},B = (37530/Re)^{16} - Single-phase gradients:
(dp/dz)_lo = f_l (ρ_l V_lo²)/(2D),(dp/dz)_go = f_g (ρ_g V_go²)/(2D)
Two-phase multiplier
- Martinelli parameter:
X = √( (dp/dz)_lo / (dp/dz)_go ) - Chisholm form:
φlo² = 1 + C/X + 1/X² - Frictional gradient:
(dp/dz)_{tp} = φlo² (dp/dz)_lo - Frictional drop:
ΔP_f = (dp/dz)_{tp} L - Mixture density (homogeneous with α from x):
α = 1 / [1 + ((1−x)/x)(ρ_g/ρ_l)],ρ_m = α ρ_g + (1−α) ρ_l - Static head:
ΔP_s = ρ_m g Δz; Minor:ΔP_m = K_Σ (ρ_m V_m²/2),V_m = G/ρ_m - Total:
ΔP = ΔP_f + ΔP_s + ΔP_m
| Load | D | L | ε | ṁ | x | ρl | μl | ρg | μg | Δz | KΣ | Mode |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.05 | 30 | 0.000045 | 0.5 | 0.10 | 958 | 0.00028 | 0.6 | 1.3e-5 | 5 | 2 | auto | |
| 0.025 | 12 | 0.000015 | 0.25 | 0.30 | 900 | 0.001 | 2 | 1.8e-5 | 0 | 1 | tt | |
| 0.1 | 50 | 0.00026 | 1.2 | 0.05 | 970 | 0.0006 | 1 | 1.5e-5 | -3 | 4 | manual |
- Choose your preferred unit system at the top.
- Enter pipe diameter, length, roughness, flow rate, and gas quality.
- Provide liquid and gas densities and viscosities at operating conditions.
- Set elevation change and total minor-loss coefficient if applicable.
- Choose C handling: automatic by Reynolds, forced TT, or manual value.
- Click Calculate or try Quick TT-only for TT mode.
- Export results via Download CSV or Download PDF.
Heuristic flow-pattern hints use superficial velocities and X dominance; consult detailed maps for design-critical decisions.