Equation to Standard Form Calculator

Convert lines, quadratics, conics, and circles into exact standard form instantly online. See clear, stepwise derivations with automatically normalized integer coefficients and fractions handling. Append results to a table, then export CSV or PDF snapshots. Fast, accurate, classroom friendly, team ready, documentation perfect outputs.

Input

Instant
Assumes A·x + B·y + C = 0.
Assumes y = a(x − h)² + k; converts to y = ax² + bx + c.
Assumes y = a(x − r₁)(x − r₂); converts to y = ax² + bx + c.
Outputs (x − h)² + (y − k)² = r².
Assumes x² + y² + D·x + E·y + F = 0; converts to (x − h)² + (y − k)² = r².

Result

Fill inputs and click Convert to see the standard form and steps.

Formula used

  • Line standard form: A·x + B·y + C = 0, with integer A, B, C, gcd(|A|,|B|,|C|)=1, and A ≥ 0.
  • From slope–intercept: y = m x + b ⇒ m x − y + b = 0 ⇒ scale to integers ⇒ normalize gcd, sign.
  • From point–slope: y − y₁ = m(x − x₁) ⇒ m x − y + (−m x₁ + y₁) = 0 ⇒ normalize.
  • From two points: A = y₁ − y₂, B = x₂ − x₁, C = x₁y₂ − x₂y₁ ⇒ normalize.
  • Quadratic: Vertex y = a(x−h)² + k ⇒ y = a x² − 2ah x + (ah² + k).
  • Quadratic intercepts: y = a(x−r₁)(x−r₂) ⇒ y = a x² − a(r₁+r₂)x + a r₁ r₂.
  • Circle general: x² + y² + D x + E y + F = 0 ⇒ (x + D/2)² + (y + E/2)² = (D²+E²)/4 − F.

How to use

  1. Choose Equation Type and the Input Form.
  2. Enter parameters. Decimals are fine; fractions are normalized.
  3. Click Convert to see standard form and derivation.
  4. Click Add row to append the result to the table.
  5. Use Download CSV or Download PDF to export the table.

Results table

# Timestamp Type Input form Inputs Standard form Details
1 2026-01-25 22:03:01 Line Two points (1,2) and (4,8) 2x − y = 0 A=2, B=−1, C=0
2 2026-01-25 22:03:01 Quadratic Vertex a=1, h=2, k=3 y = x² − 4x + 7 a=1, b=−4, c=7
3 2026-01-25 22:03:01 Circle General D=−4, E=6, F=−12 (x − 2)² + (y + 3)² = 25 Center(2, −3), r=5
Example rows are prefilled for reference. Add your own using Add row.

FAQs

We use A·x + B·y + C = 0 with integer coefficients, gcd(|A|,|B|,|C|)=1, and A ≥ 0 for a consistent, unique representation.

Yes. Decimals are internally converted to rational numbers. We then scale to integer coefficients and normalize the greatest common divisor.

You can enter standard y = ax² + bx + c, vertex y = a(x−h)² + k, or intercept y = a(x−r₁)(x−r₂). We output y = ax² + bx + c.

From x² + y² + D x + E y + F = 0 we complete the square to (x − h)² + (y − k)² = r² and provide center and radius.

Use the buttons above the table to download CSV or generate a PDF snapshot of the table for reports or records.

Data: Common Conversions

Reference examples showcasing inputs and their normalized standard forms.

# Type Input Standard Form Notes
1 Line y = 2x − 3 2x − y − 3 = 0 A=2, B=−1, C=−3; gcd=1
2 Line Through (−1,4), slope 3/2 3x − 2y + 11 = 0 Scaled to integers, A ≥ 0
3 Quadratic y = (x − 2)² + 1 y = x² − 4x + 5 Expanded from vertex form
4 Quadratic y = 2(x − 1)(x − 5) y = 2x² − 12x + 10 Intercept to standard
5 Circle x² + y² − 6x + 8y − 11 = 0 (x − 3)² + (y + 4)² = 36 Center (3, −4), r = 6

Data: Normalization Summary

Typical coefficient normalization outcomes across representative inputs.

Metric Lines Quadratics Circles
Inputs needing integer scaling 67% 54% 38%
Cases with gcd > 1 reduced 49% 41% 22%
Outputs achieving A ≥ 0 after sign flip 35%
Average terms simplified per expression 2.1 2.7 1.6
Percentages are illustrative for documentation; actual runs depend on your data.

Related Calculators

Proportion and Ratio Calculatorsquare root calculator with stepsnegative square root calculatorfraction square root calculatorsquare root division calculatordecimal to square root calculatorderivative of square root calculatorharmonic mean calculatorbinomial distribution mean calculatordiscrete random variable mean calculator

Important Note: All the Calculators listed in this site are for educational purpose only and we do not guarentee the accuracy of results. Please do consult with other sources as well.