y = A · rootn( B · (x − C) ) + D
For even
n, domain requires B · (x − C) ≥ 0.
| # | x | y |
|---|
| x | y |
|---|---|
| 0 | 0 |
| 1 | 1 |
| 4 | 2 |
| 9 | 3 |
| 16 | 4 |
Formula used
We graph functions of the form
y = A · rootn( B · (x − C) ) + D where
A scales vertically, B scales inside the radical,
C shifts horizontally, and D shifts vertically.
- Index:
n = 2(square),n = 3(cube), or any integern ≥ 2. - Domain:
For even
n, requireB · (x − C) ≥ 0. For oddn, all realxare allowed. - Range: Determined by
A,D, and parity ofn: for evennandA ≥ 0, range is[D, ∞); ifA < 0, range is(−∞, D]. For oddn, range is all real numbers.
How to use this calculator
- Select a radical type or choose a custom index.
- Set
A, B, C, Dto control stretch and shifts. - Choose an
xrange; the tool enforces domain rules. - Click Graph Function to plot and generate data.
- Use Download CSV to export the computed dataset.
- Use Download PDF to save the chart and summary.
- Click Load Example to see a classic transformation.
How to graph a radical function?
A radical of the form
y = A · rootn( B · (x − C) ) + D
transforms the parent root graph using stretches and shifts.
- Identify the index
nand its parity (even or odd). - Set the domain:
for even
n, ensureB · (x − C) ≥ 0; for oddn, any realxis valid. - Locate the key point:
the radicand is zero at
x = C; the graph passes through(C, D). IfB > 0, allowablexare on the side wherex ≥ C; ifB < 0, usex ≤ C. - Choose sample x-values within the domain and compute
y = A · rootn(B(x − C)) + D. - Apply transformations:
|A|controls vertical stretch, sign ofAreflects vertically;|B|compresses or stretches horizontally, sign ofBflips the allowed side. - Plot points and sketch the curve smoothly, noting monotonicity
(for many cases, increasing when
A·B > 0). - Check intercepts when defined:
y‑intercept at
x = 0(if in domain); x‑intercepts from0 = A · rootn(B(x − C)) + D.
y = 2·√(x − 4) − 1, the graph starts at (4, −1) and moves right.
Parameter effects at a glance
| Parameter | Effect on graph | Effect on domain | Example |
|---|---|---|---|
A (vertical scale) |
Stretches by |A|; flips over x‑axis if A<0. |
No change to domain interval. | A=2 doubles heights; A=-1 reflects. |
B (inside scale) |
Horizontal compression by |B|; selects allowed side if even n. |
Even n: if B>0, x≥C; if B<0, x≤C. |
B=-1 forces domain to the left of C. |
C (horizontal shift) |
Shifts the graph right if larger C. |
Moves domain boundary to x=C for even n. |
C=4 starts at x=4 when n=2. |
D (vertical shift) |
Moves the graph up/down. | Even n: moves lower/upper bound of range. |
D=-1 lowers the whole curve by one unit. |
n (index) |
Controls curvature; odd roots pass through all y values. | Even n restricts domain; odd n allows all reals. |
n=3 allows negative radicands without issue. |
Domain and range quick guide
- Even index,
B>0: Domain:x ≥ C, Range:y ≥ DifA≥0, elsey ≤ D. - Even index,
B<0: Domain:x ≤ C, Range: same bounds usingD. - Odd index (any
B≠0): Domain: all reals, Range: all reals.
y = 2·√(x − 1) + 3x ≥ 1. Range: y ≥ 3. Key point: (1,3).y = -√(5 − x)x ≤ 5. Range: y ≤ 0. Key point: (5,0).Worked examples with domains, ranges, and points
-
Example 1 (even index):
y = 3·√(x + 1) − 2Domain:x ≥ -1. Range:y ≥ -2. Points:(-1, -2),(8, 7),(15, 10). -
Example 2 (even index,
B<0):y = -2·√(5 − x) + 4Domain:x ≤ 5. Range:y ≤ 4. Points:(5, 4),(1, 0),(-4, -2). -
Example 3 (odd index):
y = 0.5·∛(2(x − 3)) + 1Domain: all reals. Range: all reals. Points:(3, 1),(5, 1.6299),(-1, 0.3701)(rounded).