Enter Values
History
| Timestamp | x | n | Method | Tol | Iter | Dec | Result |
|---|
History is kept in your session. CSV uses session data; PDF uses the on‑page table.
Formula Used
The real n‑th root of a value x is a real number y such that yn = x. For x ≥ 0, the principal root is y = x1/n. For x < 0 and odd n, y = −|x|1/n. For x < 0 and even n, no real root exists.
We also implement Newton’s method for solving f(y) = yn − x = 0:
yk+1 = ((n−1)·yk + x / ykn−1) / n, with a tolerance stop criterion |Δy| ≤ tol · max(1, |y|).
How to Use
- Enter the value x and a positive integer degree n.
- Choose decimals, method, tolerance, and maximum iterations.
- Optionally enable the iterations log to see convergence.
- Press Calculate to get the root.
- Every calculation is added to your on‑page history table.
- Use Download CSV or Download PDF to export.
Example Data
| x | n | Root | Note |
|---|---|---|---|
| 27 | 3 | 3.000000000 | Principal real root |
| 16 | 4 | 2.000000000 | Principal real root |
| 10 | 3 | 2.154434690 | Principal real root |
| -125 | 3 | -5.000000000 | Principal real root |
| 0 | 5 | 0.000000000 | Zero root |
| 1000000 | 6 | 10.000000000 | Principal real root |
| 2 | 12 | 1.059463094 | Principal real root |
Perfect Powers Quick Reference (≤ 1000)
Squares
Numbers x with an exact square root y where x = y2.
| y | x = y^2 |
|---|---|
| 1 | 1 |
| 2 | 4 |
| 3 | 9 |
| 4 | 16 |
| 5 | 25 |
| 6 | 36 |
| 7 | 49 |
| 8 | 64 |
| 9 | 81 |
| 10 | 100 |
| 11 | 121 |
| 12 | 144 |
| 13 | 169 |
| 14 | 196 |
| 15 | 225 |
| 16 | 256 |
| 17 | 289 |
| 18 | 324 |
| 19 | 361 |
| 20 | 400 |
| 21 | 441 |
| 22 | 484 |
| 23 | 529 |
| 24 | 576 |
| 25 | 625 |
| 26 | 676 |
| 27 | 729 |
| 28 | 784 |
| 29 | 841 |
| 30 | 900 |
| 31 | 961 |
Cubes
Numbers x with an exact cube root y where x = y3.
| y | x = y^3 |
|---|---|
| 1 | 1 |
| 2 | 8 |
| 3 | 27 |
| 4 | 64 |
| 5 | 125 |
| 6 | 216 |
| 7 | 343 |
| 8 | 512 |
| 9 | 729 |
| 10 | 1000 |
Fourth Powers
Numbers x with an exact fourth root y where x = y4.
| y | x = y^4 |
|---|---|
| 1 | 1 |
| 2 | 16 |
| 3 | 81 |
| 4 | 256 |
| 5 | 625 |
Fifth Powers
Numbers x with an exact fifth root y where x = y5.
| y | x = y^5 |
|---|---|
| 1 | 1 |
| 2 | 32 |
| 3 | 243 |
Use these lists to quickly spot inputs that yield exact integer roots.
Convergence Snapshot (Newton’s Method)
Iteration counts to reach tolerance illustrate expected performance on diverse inputs.
| x | n | Tol | Max Iter | Iterations | Result | Status |
|---|---|---|---|---|---|---|
| 27 | 3 | 1.0E-12 | 200 | 1 | 3 | Converged |
| 2 | 12 | 1.0E-12 | 200 | 1 | 1.059463094 | Converged |
| 1.0E-8 | 2 | 1.0E-12 | 200 | 1 | 0.0001 | Converged |
| 100000000 | 4 | 1.0E-12 | 200 | 1 | 100 | Converged |
| -125 | 3 | 1.0E-12 | 200 | 1 | -5 | Converged |
| 10 | 3 | 1.0E-12 | 200 | 1 | 2.15443469 | Converged |
Iteration counts depend on x, n, initial guess, and tolerance.